Part Number Hot Search : 
100ML F2001 MS250 W5100 BPC2508 MIW1145 LT105 ISD5008
Product Description
Full Text Search
 

To Download MB40768H Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FUJITSU SEMICONDUCTOR DATA SHEET
DS04-28313-1E
ASSP
BIPOLAR
Image Processing
D/A Converter (1-ch, 8-bit, 60 MSPS)
MB40768H
s DESCRIPTION
The MB40768H is a low-power and high-speed 8-bit D/A converter. The digital input is TTL compatible and the analog output voltage is 3 to 5 V. Maximum conversion speed is 60 MHz. The internal reference voltage provided has two types of resistor division scheme and band-gap reference scheme; the external reference voltage may also be used. The MB40768H is suitable for high-definition TV or VCR application.
s FEATURES
* Resolution: 8 bits * Conversion characteristics: Maximum conversion rate: 60 MSPS [min.] Linearity error: 0.2 % [max.] * I/O: Digital input voltage: TTL level Analog output voltage: 2VP-P (3 to 5 V) * Reference voltage: VROUT1: Resistor division circuit (0.6 x VCCA) VROUT2: Band-gap reference circuit (VCCA - 2 V) * Power supply voltage: +5 V single power supply * Power consumption: 160 mW [typical value for the analog output voltage of 2 VP-P] 120 mW [typical value for the analog output voltage of 1 VP-P]
s PACKAGES
18-pin Plastic DIP 20-pin Plastic SOP
(DIP-18P-M02)
(FPT-20P-M01)
MB40768H
s PIN ASSIGNMENTS
(Top view) (MSB) D1 D2 D3 D4 D5 D6 D7 (LSB) D8 D.GND 1 2 3 4 5 6 7 8 9 (DIP-18P-M02) (FPT-20P-M01) 18 17 16 15 14 13 12 11 10 CLK VCCD VCCA A.OUT VROUT2 VRIN VROUT1 COMP A.GND (MSB) D1 D2 D3 D4 D5 D6 D7 (LSB) D8 N.C. D.GND 1 2 3 4 5 6 7 8 9 10 (Top view) 20 19 18 17 16 15 14 13 12 11 CLK VCCD VCCA A.OUT VROUT2 VRIN VROUT1 N.C. COMP A.GND
s PIN DESCRIPTIONS
Pin No. DIP 1 to 8 18 17 16 9 10 SOP 1 to 8 20 19 18 10 11 Pin name D1 to D8 CLK VCCD VCCA D.GND A.GND I/O I I -- -- -- -- Description Input pins for data signals (D1: MSB, D8: LSB) Input pin for clock signal Digital power supply pin (+5 V) Analog power supply pin (+5 V) Digital ground pin (0 V) Analog ground pin (0 V) Reference voltage input pin. Used for setting dynamic range for analog output. Connect this pin with either VROUT1 or VROUT2 pin when using the internal reference voltage. When using the external reference voltage, use it within the range of 2.65 to 4.3 V or for the VCCA - VRIN range of 0.7 to 2.2 V. Reference voltage output pin 1. Resistance division reference voltage, with its output voltage set to 0.6 x VCCA. This pin, if connected with the VRIN pin, provides VCCA analog output voltage at 0.6 x VCCA. Reference voltage output pin 2. Band-gap reference voltage, with its output voltage set to VCCA - 2 [V]. This pin, if connected with the VRIN pin, provides the VCCA analog output voltage at VCCA 1 - 2 [V]. Phase compensated capacitance pin. Insert the capacitance of 0.1 F or more between this pin and the A.GND for the phase compensated capacitance. Analog signal output pin No connection pins
13
15
VRIN
I
12
14
VROUT1
O
14
16
VROUT2
O
11 15 --
12 17 9, 13
COMP A.OUT N.C.
-- O --
2
MB40768H
s BLOCK DIAGRAM
CLK A.OUT
(MSB) D1 R D2 R D3 D4 D5 D6 D7 D8 (LSB) Input buffer Master slave flip-flop Current switch R R R R 2R 2R 2R 2R R
8
8
Buffer
8
VCCA
Reference resistor Amp Reference voltage 1 0.6 x VCCA Reference voltage 2 VCCA - 2 V
D.GND A.GND
VROUT1
VROUT2
VRIN
COMP
VCCD
VCCA
3
MB40768H
s ABSOLUTE MAXIMUM RATINGS (See WARNING)
(A.GND = D.GND = 0 V) Parameter Analog power supply voltage Power supply voltage Digital power supply voltage Power supply voltage difference Digital signal input voltage Storage temperature VCCA VCCD VCCD - VCCA VID Tstg Symbol Rating -0.5 to +7.0 -0.5 to +7.0 1.5 -0.5 to +7.0 -55 to +125 Units V V V V C
WARNING: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
s RECOMMENDED OPERATING CONDITIONS
(A.GND = D.GND = 0 V) Parameter Analog power supply voltage Power supply voltage Digital power supply voltage Power supply voltage difference Analog reference voltage Digital High level input voltage Digital Low level input voltage Clock frequency Setup time Hold time High level minimum pulse width Low level minimum pulse width Phase compensated capacitance Operating ambient temperature VCCA VCCD VCCA - VCCD VCCA - VRIN VRIN VIHD VILD fCLK tsu th twH twL CCOMP Top Symbol Value Min. 4.75 4.75 -0.2 0.70 2.65 2.0 -- -- 8 2 6.5 6.5 0.1 -20 Typ. 5.00 5.00 -- 2.00 3.00 -- -- -- -- -- -- -- -- -- Max. 5.25 5.25 0.2 2.20 4.30 -- 0.8 60 -- -- -- -- -- +75 Units V V V V V V V MHz ns ns ns ns F C
4
MB40768H
s ELECTRIC CHARACTERISTICS
1. DC Characteristics
Parameter Resolution Linearity error Digital High level input current Digital Low level input current Reference input current Resistance division method Band-gap reference method Reference voltage Reference voltage Temperature coefficient (VCCA = VCCD = 4.75 V to 5.25 V, A.GND = D.GND = 0 V, Ta = -20C to +75C) Symbol -- LE IIHD IILD IRIN VROUT1 VROUT2 -- VOFS VOZS RO ICC Condition -- DC precision VIHD = 2.7 V VILD = 0.4 V VRIN = 3.000 V VCCA = 5.00 V VCCD = 5.00 V -- -- -- VCCA = 5.00 V VCCD = 5.00 V VRIN = 3.000 V Ta = +25C VCCA = 5.25 V VCCD = 5.25 V VRIN = VROUT1 Value Min. -- -- -- -100 -- 2.900 Typ. -- -- -- -- -- 3.000 Max. 8 0.2 20 -- 10 3.100 Units bit % A A A V V ppm/C mV V mA
VCCA - 2.100 VCCA - 2.000 VCCA - 1.900 -- VCCA - 20 2.938 192 -- 100 VCCA 3.008 240 32* -- -- 3.078 288 56
Full-scale output voltage Zero-scale output voltage Output resistance Current consumption * : VCCA = VCCD = 5 V
2. AC Characteristics
(VCCA = VCCD = 4.75 V to 5.25 V, A.GND = D.GND = 0 V, Ta = -20C to +75C) Parameter Maximum conversion rate Output propagation time Output rise time Output fall time Settling time Symbol Fs tpd tr tf tset CL = 15 pF Terminal resistance at A.OUT pin = 240 Condition Value Min. 60 -- -- -- -- Typ. -- 7 5 5 15 Max. -- -- -- -- -- Units MSPS ns ns ns ns
5
MB40768H
s TIMING DIAGRAM
tsu VIHD
th 3V 1.5 V
Data input
VILD twH VIHD twL
0V
3V 1.5 V
Clock input
VILD
0V
1/2 LSB VOFS 90 % 90 %
Analog ouput
50 %
50 % 1/2 LSB
10 % VOZS tr tsetLH tPLH tPHL tf
10 %
tsetHL
6
MB40768H
s DIGITAL INPUT EQUIVALENT CIRCUIT
VCCD 50 k 50 k
Digital input CLK, D1 to D8
Threshold voltage = 1.4 V
D.GND
s ANALOG OUTPUT EQUIVALENT CIRCUIT
VCCA RO = 240 A.OUT IO
A.GND
s REFERENCE VOLTAGE OUTPUT EQUIVALENT CIRCUIT
VCCA 4 k VROUT1 6 k - A.GND + RS* VROUT2 VCCA
BGR
*: Overcurrent protection resistor (2 k) when short-circuited to GND.
7
MB40768H
s DAC OUTPUT VOLTAGE CHARACTERISTIC
Input D1 to D8 FF (VCCA) VOFS
Output A.OUT 5.000 V 5.000 V
00
VOZS (VRIN)
3.008 V 3.000 V . 1 LSB = 8 mV .
s EQUATION FOR IDEAL DAC OUTPUT VOLTAGE
A.OUT = VCCA - 255 -N x (VCCA - VRIN) 256 (N: digital input code for 0 to 255) 255 x (VCCA - VRIN) 256
VOFS = VCCA VOZS = VCCA -
8
MB40768H
s STANDARD EXAMPLE OF CONNECTION
5V 2.2 H 2.2 H
0.01 F
47 F
47 F
0.01 F
VCCD
VCCA
DATA input
D1 to D8
A.OUT VROUT2 VRIN VROUT1 Connected to VROUT1 or VROUT2 pin or external reference voltage
CLK input
CLK
COMP 0.1 F
D.GND
A.GND
s NOTES ON USAGE
* Countermeasures for switching noise To prevent the switching noise riding on the analog output signal to the maximum possible extent, insert the noise limiting capacitor between VCCA-A.GND pins, and between VCCD-D.GND pins closest as possible to the IC pins. * Power supply patterns To reduce parasitic impedance, use the patterns as wide as possible to be connected to the VCCA, VCCD, A.GND and D.GND pins.
9
MB40768H
s TYPICAL CHARACTERISTIC CURVES
1. Power supply current vs Ambient temperature
100 VCC = 5.25 V VRIN = VROUT1
2. Linearity error vs Ambient temperature
0.2 VCC = 5.00 V VRIN = 3.000 V
Power supply current ICC (mA)
Linearity error |LE| (%)
80
0.15
60
0.1
40
20
0.05
0 -25
0
25
50
75
100
0 -25
0
25
50
75
100
Ambient temperature Ta (C)
Ambient temperature Ta (C)
3. Output resistance vs Ambient temperature
300
4. Full-scale output voltage vs Ambient temperature
VCC = 5.00 V VRIN = 3.000 V
Full-scale output voltage VOFS (V)
0 25 50 75 100
Output resistance RO ()
280
VCC (reference) -10
260
240
-20
220
-30
200 -25
-40 -25
0
25
50
75
100
Ambient temperature Ta (C)
Ambient temperature Ta (C)
5. Zero-scale output voltage vs Ambient temperature
3.100
6. VROUT1 reference output voltage vs Ambient temperature
3.100
Zero-scale output voltage VOZS (V)
VCC = 5.00 V VRIN = 3.000 V 3.050
Reference output voltage VROUT1 (V)
VCC = 5.00 V 3.050
3.000
3.000
2.950
2.950
2.900 -25
0
25
50
75
100
2.900 -25
0
25
50
75
100
Ambient temperature Ta (C)
Ambient temperature Ta (C)
(Continued)
10
MB40768H
(Continued)
7. VROUT2 reference output vs Ambient temperature
3.100
8. VROUT2 reference output voltage vs Power supply voltage
Power supply voltage -- Reference output voltage [VCC -- VROUT2]
2.100 Ta = +25C 2.050
Reference output voltage VROUT2 (V)
VCC = 5.00 V 3.050
3.000
2.000
2.950
1.950
2.900 -25
0
25
50
75
100
1.900 3.5
4.0
4.5
5.0
5.5
6.0
Ambient temperature Ta (C)
Power supply voltage VCC (V)
9. Setup time vs Ambient temperature
10 VCC = 5.00 V 8
10. Setup time vs Power supply voltage
10 Ta = +25C 8
Setup time tSU (ns)
6
Setup time tSU (ns)
0 25 50 75 100
6
4
4
2
2
0 -25
0 3.5
4.0
4.5
5.0
5.5
6.0
Ambient temperature Ta (C)
Power supply voltage VCC (V)
11. Hold time vs Ambient temperature
6 VCC = 5.00 V 4
12. Hold time vs Power supply voltage
6 Ta = +25C 4
Hold time th (ns)
Hold time th (ns)
2
2
0
0
-2
-2
-4 -25
0
25
50
75
100
-4 3.5
4.0
4.5
5.0
5.5
6.0
Ambient temperature Ta (C)
Power supply voltage VCC (V)
(Continued)
11
MB40768H
(Continued)
13. Minimum clock pulse width vs Ambient temperature
Minimum clock pulse width twL, twH (ns)
10 VCC = 5.00 V 8
14. Minimum clock pulse width vs Power supply voltage
Minimum clock pulse width twL, twH (ns)
10 Ta = +25C 8
6 twl twh 2
6
4
4 twh twl 2
0 -25
0
25
50
75
100
0 3.5
4.0
4.5
5.0
5.5
6.0
Ambient temperature Ta (C)
Power supply voltage VCC (V)
15. Rise time, Fall time vs Ambient temperature
10 VCC = 5 V VRIN = 3.000 V CL = 15 pF Analog output terminated with 240 (1 V amplitude)
16. Rise time, Fall time vs Power supply voltage
10 Ta = +25C VRIN = 3.000 V CL = 15 pF Analog output terminated with 240 (1 V amplitude)
Rise time tr, fall time tf (ns)
Rise time tr, fall time tf (ns)
8
8
6
6
4
4
2
2
0 -25
0
25
50
75
100
0 3.5
4.0
4.5
5.0
5.5
6.0
Ambient temperature Ta (C)
Power supply voltage VCC (V)
17. Delay time vs Ambient temperature
20 VCC = 5 V VRIN = 3.000 V CL = 15 pF Analog output terminated with 240 (1 V amplitude)
18. Delay time vs Power supply voltage
20 Ta = +25C VRIN = 3.000 V CL = 15 pF Analog output terminated with 240 (1 V amplitude)
Delay time tPLH, tPHL (ns)
12
Delay time tPLH, tPHL (ns)
75 100
16
16
12
8
8
4
4
0 -25
0
25
50
0 3.5
4.0
4.5
5.0
5.5
6.0
Ambient temperature Ta (C)
Power supply voltage VCC (V)
12
MB40768H
s ORDERING INFORMATION
Part number MB40768HP MB40768HPF Package 18-pin Plastic DIP (DIP-18P-M02) 20-pin Plastic SOP (FPT-20P-M01) Remarks
13
MB40768H
s PACKAGE DIMENSIONS
18-pin Plastic DIP (DIP-18P-M02)
22.05 -0.30 .868 -.012
+.008
+0.20
INDEX-1 INDEX-2 6.200.25 (.244.010)
5.00(.197)MAX
0.51(.020)MIN 0.250.05 (.010.002)
3.00(.118)MIN
0.45
+0.14 -0.05 +.006
.018 -.002 1.20 -0 .047 1.27(.050) MAX
+0.30 +.012 -0
1.20 -0
+0.30 +.012 -0
.047 2.54(.100) TYP
7.62(.300) TYP
15MAX
C
1994 FUJITSU LIMITED D18009S-3C-3
Dimensions in mm (inches) Dimensionsin mm (inches)
(Continued)
14
MB40768H
(Continued)
20-pin Plastic SOP (FPT-20P-M01)
2.25(.089)MAX 12.70 -0.20 .500 -.008
+0.25 +.010
0.05(.002)MIN (STAND OFF)
INDEX
5.300.30 (.209.012)
7.800.40 (.307.016)
6.80 -0.20 +.016 .268 -.008
+0.40
1.27(.050) TYP
0.450.10 (.018.004)
O0.13(.005)
M
0.15 -0.02 +.002 .006 -.001
+0.05
0.500.20 (.020.008)
Details of "A" part 0.20(.008)
"A" 0.10(.004) 11.43(.450)REF 0.50(.020) 0.18(.007)MAX 0.68(.027)MAX
C
1994 FUJITSU LIMITED F20003S-5C-4
Dimensions in mm (inches)
15
MB40768H
FUJITSU LIMITED
For further information please contact:
Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045 Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220
All Rights Reserved. Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given. The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies. The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu. Fujitsu reserves the right to change products or specifications without notice. No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu. The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.
F9702 (c) FUJITSU LIMITED Printed in Japan
16


▲Up To Search▲   

 
Price & Availability of MB40768H

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X